Improving Face Recognition by Exploring Local Features with Visual Attention
نویسندگان
چکیده
Over the past several years, the performance of stateof-the-art face recognition systems has been significantly improved, due in a large part to the increasing amount of available face datasets and the proliferation of deep neural networks. This rapid increase in performance has left existing popular performance evaluation protocols, such as standard LFW, nearly saturated and has motivated the emergence of new, more challenging protocols (aimed specifically towards unconstrained face recognition). In this work, we employ the use of parts-based face recognition models to further improve the performance of stateof-the-art face recognition systems as evaluated by both the LFW protocol, and the newer, more challenging protocols (BLUFR, IJB-A, and IJB-B). In particular, we employ spatial transformers to automatically localize discriminative facial parts which enables us to build an end-to-end network where global features and local features are fused together, making the final feature representation more discriminative. Experimental results, using these discriminative features, on the BLUFR, IJB-A and IJB-B protocols, show that the proposed approach is able to boost performance of state-of-the-art face recognition systems. The proposed approach is not limited to one architecture but can also be applied to other face recognition networks.
منابع مشابه
Hybridization of Facial Features and Use of Multi Modal Information for 3D Face Recognition
Despite of achieving good performance in controlled environment, the conventional 3D face recognition systems still encounter problems in handling the large variations in lighting conditions, facial expression and head pose The humans use the hybrid approach to recognize faces and therefore in this proposed method the human face recognition ability is incorporated by combining global and local ...
متن کاملDisguised Face Recognition by Using Local Phase Quantization and Singular Value Decomposition
Disguised face recognition is a major challenge in the field of face recognition which has been taken less attention. Therefore, in this paper a disguised face recognition algorithm based on Local Phase Quantization (LPQ) method and Singular Value Decomposition (SVD) is presented which deals with two main challenges. The first challenge is when an individual intentionally alters the appearance ...
متن کاملFace Recognition by Cognitive Discriminant Features
Face recognition is still an active pattern analysis topic. Faces have already been treated as objects or textures, but human face recognition system takes a different approach in face recognition. People refer to faces by their most discriminant features. People usually describe faces in sentences like ``She's snub-nosed'' or ``he's got long nose'' or ``he's got round eyes'' and so like. These...
متن کاملFace Detection at the Low Light Environments
Today, with the advancement of technology, the use of tools for extracting information from video are much wider in terms of both visual power and the processing power. High-speed car, perfect detection accuracy, business diversity in the fields of medical, home appliances, smart cars, humanoid robots, military systems and the commercialization makes these systems cost effective. Among the most...
متن کاملAutomatic Face Recognition via Local Directional Patterns
Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...
متن کامل